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Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are
constant across time), but this assumption does not always hold true. The authors provide a description of a new
approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in
brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a
second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances
of the random walks associated with state space model parameters and their autoregressive components. The
authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic
resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing
on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps:
Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying
autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps
performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully
related to behavior in a clinical sample.

Published by Elsevier Inc.
Introduction

Background and study motivation

Advances in connectivity mapping of functional neuroimaging data
have significantly increased science and society's understanding of the
brain (Behrens and Sporns, 2012; Smith, 2012).Many of these advances
concern data-driven connectivity analyses (Gates and Molenaar, 2012;
Smith et al., 2011). One type of connectivity analysis is directed func-
tional connectivity mapping, which aims to reveal the direction of rela-
tions between brain regions of interest (ROIs) based on statistical
dependencies in the neural signal (Friston et al., 2013). It has been
accomplished by means of several analysis techniques, particularly
structural equation modeling (SEM) involving only contemporaneous
directed connections, and vector autoregressive modeling (VAR)
involving only lagged directed connections. Estimates of both contem-
poraneous and lagged directed connections can be obtainedwith struc-
tural VARs (Chen et al., 2011; Smith et al., 2012), and (extended) unified
structural equation modeling (euSEM, cf. Gates et al., 2010, 2011; Kim
et al., 2007). In order to streamline computation and aid interpretation,
velopment and Family Studies,
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these analysis techniques often assume stationarity, implying that con-
nectivity parameters are constant across the neuroimaging time series,
but emerging evidence suggests that this assumption is not always an
appropriate one (reviewed in Hutchison et al., 2013).

Researchers have generally used one of two approaches for detect-
ing time-varying relations in connectivity maps. First, sliding windows
show time-varying, or dynamic, relations in these maps. In general,
they determine change in connectivity indices between ROIs across
equally-spaced sections – orwindows – of the time series (for a descrip-
tion, see Franke et al., 2008). The indices of interest are usually derived
from a correlation analysis, but parameters from other analyses
(e.g., time-frequency and independent components) have also been
used (Chang and Glover, 2010; Kiviniemi et al., 2011). This work
shows that time-varying relations are present in resting state and
task-related functional connectivity maps, and that some of the varia-
tion is systematic (e.g., as determined by clustering algorithms) within
and between individuals (Allen et al., 2014; Betzel et al., 2012; Chang
and Glover, 2010; Chang et al., 2013; Handwerker et al., 2012; Jones
et al., 2012; Kiviniemi et al., 2011; Rack-Gomer and Liu, 2012; Sakoğlu
et al., 2010; Tagliazucchi et al., 2012; Thompson et al., 2013).

Second, time-varying (structural) VARs and state spacemodels with
time-varying parameters enable model-based approaches to dynamic
connectivity mapping. In general, they determine time-varying connec-
tivity parameters (including Granger causality indices) between ROIs
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using sophisticated estimation techniques. Models for blood oxygen
level-dependent (BOLD) functional magnetic resonance imaging
(fMRI) data have primarily been estimated with recursive least squares
(for a description, seeMöller et al., 2001). State spacemodelswith time-
varying parameters have been considered in, for instance, Milde et al.
(2010) and Havlicek et al. (2011), while Primiceri (2005) presents a
general discussion of time-varying structural VARs. Because of their
direct relevance to the present model, these approaches will be further
discussed below (see Model specification section). Models for electro-
encephalography (EEG) and magnetoencephalography (MEG) data
have also been estimated with Kalman filters and smoothers (for a de-
scription, see Bar-Shalom and Fortmann, 1988), which provide more
noise suppression than sliding windows and more stable estimates
than recursive least squares (Milde et al., 2010; Vedel-Larsen et al.,
2010). Importantly, work using time-varying VARs has similarly found
that dynamic relations are present in task-related effective connectivity
maps (Hemmelmann et al., 2009; Hu et al., 2012; Milde et al., 2010;
Wacker et al., 2011).

Sliding windows and time-varying VARs indicate that the station-
arity assumption does not hold for data-driven connectivity mapping,
but these approaches have limitations. Slidingwindow approaches pro-
vide a coarse, piecemeal estimate of dynamic relations, with findings
varying based on window length; for example, the signal-to-noise
ratio is lower in short versus long windows (discussed in Hutchison
et al., 2013). So far, time-varying VARs have only been used to estimate
lagged dynamic relations using fixed (i.e., not freely estimated) vari-
ances for both invariant and time-varying parameters, while only the
latter should have nonzero variances. Moreover, it is unclear whether
Kalman filters similar to those that have been applied to EEG and MEG
data are appropriate for BOLD data, for which dynamic contemporane-
ous relations are of greatest relevance due to the comparatively low
temporal resolution of the BOLD signal (Beltz and Molenaar, 2015;
Smith et al., 2011). Thus, questions remain concerning the presence of
time-varying relations in data-driven connectivity maps. Do time-
varying relations exist when contemporaneous and lagged connection
parameters are estimatedwithin the samemodel? This is a key question
because both parameter types must be calculated within the same
model in order to ensure accurate magnitude and direction of ROI rela-
tions (Gates et al., 2010; Kim et al., 2007). Furthermore, can arbitrary
(i.e., freely estimated, without information about which relations are
dynamic and how they vary in time) contemporaneous and lagged
time-varying connection parameters in BOLD fMRI data be estimated
with an optimized second-order extended Kalman filtering/smoothing
approach? This is a key question because current Kalman filtering ap-
proaches do not freely estimate the variances of time-varying parame-
ters (Havlicek et al., 2011), requiring that all relations be estimated as
dynamic (e.g., Milde et al., 2010). This may bias results if both constant
and dynamic relations are present in the time series.

It is important to address these methodological limitations because
converging evidence suggests that dynamic relations in functional neuro-
imaging data reflectmeaningful neural processes. Time-varying function-
al relations have been found with multiple neuroimaging modalities,
including fMRI, EEG, and MEG in human beings and local field potential
recordings in cats, suggesting that they are not a mere methodological
byproduct of one signal type in human beings (e.g., Betzel et al., 2012;
Chang and Glover, 2010; de Pasquale et al., 2010; Hemmelmann et al.,
2009; Milde et al., 2010; Popa et al., 2009). In fact, recent work has dem-
onstrated correspondence between dynamic brain relationsmeasured by
BOLD fMRI and EEG (e.g., Chang et al., 2013; Tagliazucchi et al., 2012).
Moreover, time-varying relations have been linked to experimental con-
ditions (e.g., caffeine intake), behavior (e.g., vigilance during an attention
task), and disease states (e.g., Alzheimer's disease and schizophrenia),
suggesting that they are validly reflecting brain-based processes (Jones
et al., 2012; Rack-Gomer and Liu, 2012; Sakoğlu et al., 2010; Thompson
et al., 2013). Finally, time-varying analysis approaches have the potential
to increase understanding of systematic temporal changes in brain
connectivity that were previously detected, but not necessarily
interpreted in terms of neural network stationarity. For example, past
work on the neural underpinnings of olfactory habituation implemented
unique task paradigms in order to overcome the systematic decreases in
brain activity that correspond to repeated presentations of an odorant
(e.g., Karunanayaka et al., 2014), but advances in time-varying analyses
would permit explicit modeling of such habituation effects.

Current study

The goal of the current studywas to validate exploratory state space
models (SSMs) in simulated data and then to estimate the models for
BOLD fMRI data, allowing for explicit modeling of both contemporane-
ous and lagged time-varying connection parameters without a priori
information about which parameters are dynamic. SSMs, of which
VARs are a special case (that do not include measurement models),
also allow for dimension reduction based on principled statistical
methods. Last but not least, to the best of our knowledge for the first
time in neuroimaging an optimal raw data maximum likelihood meth-
od (forGaussian series) or quasi-maximum likelihoodmethod (for non-
Gaussian series) was used, consisting of a second-order extended
Kalman filter/smoother (sEKFS) embedded within a nonlinear optimiz-
er. The sEKFS can be conceived of as acting as E-step and the nonlinear
optimizer as M-step in a nonstandard EM-algorithm. This is an exten-
sion of our previous work (Beltz and Molenaar, 2015; Gates et al.,
2010; Gates and Molenaar, 2012; Gates et al., 2011) regarding innova-
tive connectivity and grouping procedures for BOLD fMRI data, proce-
dures that are among the best in the field (as tested in Gates and
Molenaar, 2012; Smith et al., 2011).

To accomplish our goal, we utilized BOLD fMRI data from nicotine-
deprived cigarette smokers performing a verbal working memory
task. These data are ideal for this methodological investigation because
the nature of the sample and specificity of the task facilitated the inter-
pretation of dynamic relations, when they were found. For instance,
past work has shown differences between the brain activity of smokers
and non-smokers during verbal working memory tasks, and the differ-
ences were modulated by nicotine deprivation (Sutherland et al.,
2011; Xu et al., 2006).

Methods

Participants

Participants were 30 cigarette users (22 men, 8 women), aged 19 to
45 years; they were randomly selected from a sample of 118 individ-
uals, who participated in one of two fMRI studies on smoking cue reac-
tivity (Wilson et al., 2012, 2013). For both studies, participants had to
report smoking an average of 15 to 40 cigarettes per day for the past
24 months, be right-handed, and pass an MRI safety screening.

Procedures

The testing procedures and task are outlined here and described in
detail elsewhere (Nichols et al., 2014;Wilson et al., 2012, 2013). Eligible
participants (as determinedwith a phone interview) came to the lab for
a baseline session that included questionnaire and psychological task
completion. Participants were cigarette-deprived for 12 h before the
neuroimaging session, as confirmed with carbonmonoxide (CO) levels.
During this session, they provided structural MRI data and fMRI data
during multiple tasks, including the verbal working memory task.

Measures

Baseline assessment
During the baseline assessment, basic demographic information and

information regarding smoking patterns were assessed with standard
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forms. Participants also completed behavioral working memory tasks
and questionnaires assessing a variety of constructs, only a subset of
which are reported herein (for details, see Wilson et al., 2012).

Neuroimaging assessment
Participants were scanned using a 3-Tesla head-only Siemens

Allegra magnet (Siemens Corporation, New York, NY) equipped with a
standard transmit/receive head coil. Prior to functional scanning, a 40
slice oblique–axial anatomical series (3.125 × 3.125 × 3.0 mm voxels)
was acquired parallel to the anterior commissure–posterior commis-
sure plane using a standard T2-weighted pulse sequence. Additionally,
a high-resolution (1 × 1 × 1 mm voxels) three-dimensional structural
volume was collected using a magnetization-prepared rapid gradient-
echo sequence. Next, functional images were acquired in the same
plane as the 40-slice anatomical series with coverage limited to the 38
center slices using a one-shot echo-planar imaging pulse sequence
(TR = 2000 ms, TE = 25 ms, FOV = 20 cm, flip angle = 79°).

The functional images were acquired during an n-back task, which
assesses verbal working memory. The task design is depicted in Fig. 1
(see also Nichols et al., 2014). Participants completed several 36-s task
blocks during which 12 (of 18) randomly-selected English letters
individually appeared (each 500 ms) between fixation crosses (each
2500 ms). Participants completed control (0-back) and experimental
(3-back) versions of the task. In the control version, participants pressed
a button each time they saw the letter X. In the experimental version,
participants pressed a button each time the current letter they saw
matched a letter they saw exactly three items ago. In both versions,
the letter the participants saw was a target (required a button press)
33% of the time. Each participant completed three 0-back task blocks,
three 3-back task blocks, and two rest blocks (fixation cross appeared
for 36 s).

Task performance
Task performance was assessed by accuracy and reaction time.

Accuracy was the percent of correct responses, and reaction time
was acquired for all responses. Both measures were collapsed across
task conditions.

Data analysis plan

Data preparation
Standard preprocessing for BOLD fMRI data was conducted. Func-

tional images were corrected for headmotion and slice timing, adjusted
Fig. 1. Control (0-back) and experimental (3-back) vers
for drift within and between runs, and aligned to standard space using a
transformation matrix generated from the co-registration of the
structural images to Montreal Neurologic Institute (MNI) space with a
six-parameter rigid-body automated registration algorithm. Functional
images were then globally mean-normalized and smoothed using a
three-dimensional Gaussian filter (8-mm full width at half maximum).

To identify ROIs, a standard two-level random-effects general linear
model (GLM) approach was implemented on a voxel-wise basis using
the AFNI program 3dDeconvolve (Cox, 1996). For each participant, pa-
rameter estimates for each version of the n-back task were obtained
from the GLM. A second-level paired t-test was then used to determine
which brain regions exhibited an effect of memory load (i.e., 3-back N 0-
back) using a voxel-wise significance threshold of p b 1 × 10−18 and a
spatial extent threshold of 10 contiguous voxels; this yielded a corrected
map-wise false positive rate of p b 0.001 according to Monte Carlo simu-
lations conducted in AFNI AlphaSim (Cox, 1996). BOLD time series data
for further analyseswere extracted from each of these brain regions: dor-
sal anterior cingulate cortex (ACC), right and left dorsolateral prefrontal
cortex (DLPFC), right and left lateral premotor cortex (LPM), and right
and left inferior parietal lobule (IPL).

Model specification
In what follows, matrices and column vectors are denoted by, respec-

tively, upper case and lower case bold letters. Latent variables are denoted
by Greek symbols. The apostrophe (′) denotes transposition. The SSM
with time-varying parameters for a p-variate observed BOLD time series
y(t) with p-variate mean level μ is:

y tð Þ ¼ μ þ Λ θ tð Þ½ �η tð Þ þ ε tð Þη tþ 1ð Þ ¼ B θ tð Þ½ �η tð Þ þ Γ θ tð Þ½ �z tð Þ þ ζ tþ 1ð Þθ tþ 1ð Þ ¼ θ tð Þ þ ξ tþ 1ð Þ:
ð1Þ

η(t), ε(t), z(t), and θ(t) are, respectively, a latent q-variate state process,
a p-variate residual measurement noise process, an s-variate measured
fixed input sequence, and an r-variate vector process containing all un-
known parameters. The q-variate process ζ(t) and the r-variate processξ(t) are process noise series. It is minimally assumed that ε(t), ζ(t) andξ(t) are zero mean, weakly stationary white noise processes (lacking se-
quential dependencies) that are mutually independent and have finite
moments up to fourth order, thus guaranteeing that parameter estimates
haveminimummean-squared error. To obtain maximum likelihood esti-
mates it is additionally assumed that ε(t), ζ(t) and ξ(t) are Gaussian.
ions of the verbal working memory (n-back) task.



794 P.C.M. Molenaar et al. / NeuroImage 125 (2016) 791–802
The first equation in Eq. (1) shows that the mapping of η(t) on
y(t) given by the (p,q)-dimensional sequence of matrices Λ[θ(t)], t =
1,…, T, depends upon the time-varying parameter-vector θ(t). The sec-
ond equation describes the time evolution of the state process η(t); the
(q,q)-dimensional autoregressive weights in Β[θ(t)] depend uponθ(t) and therefore can be arbitrarily time-varying. Γ[θ(t)] is a sequence
of (q,s)-dimensional matrices containing the arbitrarily time-
varying regression coefficients of the state process on the external
input. The third equation in Eq. (1) describes the time-dependent
variation of the unknown parameters. The r-variate parameter
process θ(t) obeys a random walk with Gaussian white noise
innovations ξ(t).
Choice of additional assumptions. Several distinct additional assumptions
can be entertained to arrive at identifiable instances of Eq. (1). Presently
a so-called exploratory version of Eq. (1) is considered in which a) the
matrix sequence Λ[θ(t)] has no a priori structure (save for the minimal
possible constraints to arrive at identifiable exploratory models); b) the
sequence of autoregressive weights Β[θ(t)] consists of diagonal matrices;
and c) the covariance function of ζ(t) is diagonal: cov[ζ(t), ζ(t− u)′] =
δ(u)diag-Ψ, where δ(u) is the Kronecker delta being zero except if u =
0. The definition of the model is completed by assumptions about the
covariance functions of ε(t) and ξ(t): cov[ε(t), ε(t − u)′] = δ(u)diag-Ξ
and cov[ξ(t), ξ(t − u)′] = δ(u)diag-Φ. The assumption that ε(t) has
diagonal covariance matrix is mandatory in order to obey the stan-
dard definition of measurement noise as being conditionally
independent.

Model transformation. The exploratory model considered in this paper
can a posteriori (after having been fitted to the data) be transformed
into an equivalent confirmatory model by means of the following trans-
formations: Λ[θ(t)]* = Λ[θ(t)]T, Β[θ(t)]* = T−1Β[θ(t)]T, ζ(t)* =
T−1ζ(t), where T is an arbitrary nonsingular (q,q)-dimensional matrix
(e.g., Goodwin and Sin, 1984). For instance, T can be chosen in such a
way thatΛ[θ(t)]* has simple structure, that is, each univariate component
series of y(t) has a high (absolute value) regression coefficient on one
component of η(t)* and vanishing regression coefficients on the remain-
ing components. Notice that such transformations destroy the indepen-
dence of the components of η(t)* in that Β[θ(t)]* is no longer diagonal
and ζ(t)* has non-diagonal covariance matrix.

Model interpretation. The state space model (Eq. (1)) is a causal model
involvingdirected functional connectivity. It contains contemporaneous
connections directed from the latent state process η(t) to the ROIs in
y(t). Also, the evolution of the latent state process is described by a
VAR and hence involves lagged directed functional connections. The
difference with the definition of directed functional connectivity given
by Friston et al. (2013), however, is that the state process involved in
these directed connections is latent. To fully comply with Friston's def-
inition it is required to interpret the q-variate latent state process as the
output of q indirectly measured ROIs. Such realistic interpretation of
latent state processes now is the norm in psychometrics (cf. Borsboom,
2009). Further conjectures about the identity of each of the indirectly
measured ROIs then are based on the pattern of its contemporaneous
and lagged directed connections, either in the original state space model
or in an equivalent transformed analogue thereof. In what follows we
will interpret latent state processes in this realistic sense. In contrast, if a
latent state process is not interpreted as the output of indirectlymeasured
ROIs then Friston et al.'s (2013) definition of directed functional connec-
tivity may not apply.

Statistical analysis. To fit the state-spacemodelwith time-varying param-
eters to an observedmultivariate time series, an augmented state process
is defined,which consists of the original latent state process and the time-
varying parameter process: x(t)′= [η(t)′, θ(t)′]. (Implementation of the
model fitting steps is presented below in Model fitting section.) Then,
using the augmented state process x(t), Eq. (1) is rewritten as the fol-
lowing nonlinear state-space model:

y tð Þ ¼ h x tð Þ; t½ � þ ε tð Þ
x tþ 1ð Þ ¼ f x tð Þ; t½ � þw tð Þ: ð2Þ

The vector-valued nonlinear functions h[x(t),t] and f[x(t),t] consist
of products of the entries of x(t). The (q + r)-dimensional innovations
processw(t) is defined as the composition of the innovation processesζ(t) and ξ(t): w(t)′ = [ζ(t)′, ξ(t)′]. That is, the form of h[x(t),t] in
Eq. (2) is the p-dimensional column vectorΛ[θ(t)]η(t). The correspond-
ing form of f[x(t),t] is the (q + r)-dimensional column vector
[η(t)′[Β[θ(t)]′, θ(t)′]]′. To illustrate with a simple model in which p =
3 and q = 1, and using simplified notation: x1(t) = η(t), x2(t) =
λ1(t), x3(t) = λ2(t), x4(t) = λ3(t), x5(t) = b1(t). Then h[x(t),t] =
[x2(t)x1(t), x3(t)x1(t), x4(t)x1(t)]′, and f[x(t),t] = [x5(t)x1(t), x2(t),
x3(t), x4(t), x5(t)]′.

In addition to the assumptions concerning Eq. (1) it is assumed that
the initial condition in Eq. (2) is: x(0)′= [η(0)′, θ(0)′] is Gaussian with
zero mean for η(0) and means equal to the estimates obtained in the
preliminary block-Toeplitz analysis (see below) for θ(0). The covariance
matrix of x(0) is diagonal with large values for η(0) and the estimated
standard errors obtained in the preliminary block-Toeplitz analysis forθ(0). Initial conditions also can be estimated according to the approach
presented in Durbin and Koopman (2001). However, the effects of
initial conditions decay exponentially and therefore are small for series
of sufficient length. Moreover, we use the smoother which re-estimates
the initial condition in the backward sweep.

Model (2) is fitted by means of the raw data likelihood method
consisting of a new variant of the expectation maximization (EM) algo-
rithm. The E-step is implemented by the sEKFS for estimation of the
latent state process x(t), using filtering equations that are augmented
by appropriate tensor terms (Eqs. 10.3.2–4 and 10.3.2–7 in Bar-Shalom
et al., 2001). Because the nonlinearities in Eq. (2) are confined to products
of the entries of x(t), the sEKFS is locally exact (derivativeswith respect to
the local state process of order higher than two are zero). The M-step
consists of estimation of the variances of ε(t) and w(t) by maximizing
the likelihood using constrained sequential quadratic optimization (Gill
et al., 1998). The equations underlying the implementation of both the
E- andM-steps are detailed inAppendixA, and the listing of a beta version
of the implementation can be obtained from the Supplementary
Materials.

Identification of time-varying parameters then proceeds as follows.
If an estimated variance along the diagonal of cov[ξ(t), ξ(t − u)′] =
δ(u)diag-Φ is zero, then the associated parameter is constant in time.
In contrast, if an estimated variance of diag-Φ is relatively large then
the associated parameter may vary substantially in time. The relation
between process noise and temporal variation of parameters is, howev-
er, indirect (see Niedźwiecki, 2000). It therefore is tested whether the
time-dependent trajectory of each estimated parameter contains
stretches which differ significantly from each other. That is, significant
differences should not be limited to a single pair of nonadjacent time
points but should involve distinct stretches each covering more than
one adjacent time point. In this test the actual estimated time-varying
standard errors are used as obtained from the sEKFS, together with
the stringent criterion that pairs of stretches should differ from each
other at least 3.1 standard errors.

Comparisonwith related approaches.Our estimation approach differs in a
number of important respects from similar approaches (in, for instance,
Havlicek et al., 2011; Hu et al., 2012; Milde et al., 2010). Firstly, use is
made of the sEKFS instead of the first-order extended Kalman filter
(Milde et al., 2010) or the cubature Kalman filter (Havlicek et al.,
2011; Hu et al., 2012). The sEKFS is optimal in the sense that it provides
an exact local approximation for the estimation of the extended state
x(t) in Eq. (2). This is because all third- and higher-order derivatives
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in the sEKFS for Eq. (2) are zero. Direct comparison of the sEKFSwith the
first-order extended Kalman filter and the unscented filter (cf. Simon,
2006) shows that it outperforms the latter two approaches. Secondly,
the variances of the process noise ξ(t + 1) in the random walk for the
parameter process θ(t), that is, the diagonal elements ofΦ, are estimat-
ed by means of likelihood maximization. Each of these process noise
variances is related to the estimation memory of the filter: the larger
this variance is, the smaller is the estimationmemory for this parameter
(Niedźwiecki, 2000). For constant parameters the estimation memory
covers all data. Therefore the estimated innovation variances can be
regarded as greatest lower bounds on the estimation memory. Previ-
ously these variances have been fixed at a small constant (Milde et al.,
2010) or are derived from the local filtering results depending upon a
fixed forgetting factor (Havlicek et al., 2011; Hu et al., 2012) as well as
a fixed coefficient determining the degree of annealing (covariance
resetting; Havlicek et al., 2011). Our approach allows for the possibility
that variances associatedwith particular parameters are zero, indicating
that these parameters are constant. Thirdly, time-varying structural
VARs (Primiceri, 2005) also enable decompositions of contemporane-
ous and lagged dynamic connections. However, results thus obtained
depend upon the ordering of univariate component series in the
vector-valued observed series (Lütkepohl, 2005; Primiceri, 2005). In
contrast, our approach to estimate contemporaneous and lagged dy-
namic connections is invariant under permutations of the order of the
entries in y(t). Fourthly, regime shifting models (Olier et al., 2013) are
optimal for tracking sudden transitions between otherwise stationary
regimes (Chow and Zhang, 2013). Hence regime shifting state space
models have different domains of application in comparison with our
approach in which time-dependent parameter changes are assumed
to be smooth (e.g., due to habituation).

In sum, our approach is optimal and timely, as it appears to be the
first exploratory (data-driven) state space modeling approach to esti-
mate smooth time-varying contemporaneous and lagged parameters
simultaneously. This is important because brain networks measured
by BOLD are best quantified with contemporaneous relations (Beltz
and Molenaar, 2015; Smith et al., 2011), but the estimation of contem-
poraneous relations is biased without estimation of lagged connection
parameters in the same network model (Gates et al., 2010).

Model fitting
For each participant the dimension of the latent state process η(t) in

Eq. (1) has been determined in a purely data-driven, exploratoryway by
means of the block-Toeplitz method described in Molenaar (1985). The
dimensionality of each individual's model was automatically deter-
mined by stepwise increases until the model had good fit to the data,
according to the following criteria: the Confirmatory Fit Index (CFI),
which had to be larger than .90, and the Non-Normed Fit Index
(NNFI), which also had to be larger than .90 (cf. Brown, 2006). Both
indices are derived from the likelihood ratio penalized for number of
free parameters and were found to perform well in simulation studies
(Gates and Molenaar, 2012). Estimates of the parameter vector thus
obtained serve as starting values in the raw data likelihood fit of Eq. (1).
The Expectation step in the likelihood maximization is obtained by
means of the sEKFS; the Maximization step is obtained by means of
NPSOL© (Gill et al., 1998), serving as a nonlinear optimizer of δ(u)diag-Ξ, δ(u)diag-Φ, and δ(u)diag-Ψ in Eq. (1). NPSOLmaximizes the likelihood
using a sequential quadratic programmingmethod. Linear and/or nonlin-
ear (in-)equality constraints are handled by a combination of penalty and
Lagrange multiplier methods as described in Bertsekas (1999). In the
present application only the soft inequality constraints are used that esti-
mated variances should be non-negative. See also the Supplementary
Materials.

Some simulation studies
As a preliminary test of the new EM algorithm, the results of some

small-scale simulation studies are reported. The simulations are small-
scale because the beta version of the implementation (obtainable from
the additional materials) has not been optimized with respect to
speed. Data were generated according to Eq. (1) with p = 6 (six ROIs)
and q=2(bivariate state process). All parameter values in the simulation
program correspond to the general pattern of parameter estimates
obtained in our empirical application (presented below). In particular,
the first column of Λ[θ(t)] has relatively high positive loadings on all
ROIs while the second column only has loadings on the fourth, fifth and
sixth ROI, the values of which are lower in absolute value than in the
first column. Three data sets were generated, each consisting of 100
replications for T = 200 TRs. Application of the EM algorithm is blind
with respect to whether there are time-varying parameters and, if so,
how these vary in time.

In the first data set there is no external input z(t). The loading (1,1)
in Λ[θ(t)] linearly decreases from 1.0 at t = 1 to 0.1 at t = 200; all other
parameters are constant. All parameter estimates are close to their true
values (never exceeding the 95% confidence intervals about their true
values). The algorithm correctly identifies that the loading (1,1) inΛ[θ(t)] is time-varying; Fig. 2A depicts its average estimate across
replications.

In the second data set there is no external input z(t). The
autoregressive parameter associated with the first component of
the latent state process (element (1,1) of B[θ(t)]) decreases from
0.8 at t = 75 to 0.1 at t = 200; all other parameters are constant. Notice
that at t = 75 a kind of regime shift occurs involving a transition from a
constant to a time-varying regime. The constant parameter estimates
are close to their true values (never exceeding the 95% confidence inter-
vals about their true values). The algorithm correctly detects that it is
element (1,1) of B[θ(t)] that is partly time-varying. Fig. 2B depicts its
average estimate across replications.

In the third data set there is univariate external input z(t). The direct
effect of the input on the first state process (element (1,1) of γ[θ(t)])
decreases from 0.7 at t = 1 to 0.1 at t = 50, after which it increases to
1.2 at t = 200. The algorithm correctly identifies that element (1,1) ofγ[θ(t)] is nonlinearly time-varying; Fig. 2C depicts its average estimate
across replications.

Task performance
Wealso explored links between time-varying parameters and perfor-

mance on the verbal working memory task. Specifically, we compared
individuals with and without dynamic parameters on task accuracy
and reaction time, using independent samples t-tests and type I error
of .05.

Results

General characteristics of state space models (SSMs): contemporaneous
and lagged parameters

All participants had state spacemodels of excellent fit, with CFIs and
NNFIs equaling or exceeding .90. As stated above, Λ[θ(t)] had no a priori
structure, so we determined its dimension for each participant by sys-
tematically increasing the number of states by one until both alternative
fit indiceswere greater than or equal to .90. This resulted inmodelswith
three states for all participants, where states reflect independent pat-
terns of dynamic coordination among ROIs.

Generally, all ROIs had substantial loadings (in Λ[θ(t)]) on the first
state for all participants, and some ROIs had substantial loadings on
the second and third states for subsets of participants. Table 1 shows
themeanROI loadings across participants on each state. All ROI loadings
on the first state were significant and greater than or equal to .76. No
ROI loadings on the second and third states were significant across all
participants, even though loadings were significant for some individ-
uals. Notice that the bilateral IPL had the highest average loadings on
both the second and third states. Also, notice that the ACC and right
LPM have some fixed loadings in order to attain an identifiable model



Fig. 2. SSM results of simulation studies, with each simulation containing 6 ROIs, 2 states, 200 measurements, and 100 replications. (A.) The SSM accurately recovered the time-varying
contemporaneous loading for the first ROI on the first state (i.e., (1,1) in Λ[θ(t)]); the average across replicates is plotted, and estimates were within the 95% confidence intervals of
the simulated values. (B.) The SSM accurately recovered the time-varying autoregressive component for the first state (i.e., (1,1) of B[θ(t)]); the average across replicates is plotted,
and estimates were within the 95% confidence intervals of the simulated values. (C.) The SSM accurately recovered the time-varying direct effect of the external input on the first state
(i.e., (1,1) of γ[θ(t)]); the average across replicates is plotted, and estimates were within the 95% confidence intervals of the simulated values.
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solution. In sum, the first latent state process explained the most vari-
ance in the SSMs and constituted the dominant common network in
this study, whereas the second and third states reflected participant-
specific neural networks (that are discussed in greater detail below).

Each state also has an autoregressive weight (in Β[θ(t)]), reflecting
its evolution over time. Table 1 shows the means for these weights
across participants. The average lagged parameter for each state was
large and significant, but it was largest and least variable for the first
state. Thus, the first state had the most slowly varying evolution over
time, but the second and third states also had substantial lagged effects.
External input effects in SSMs

None of the parameters in γ[θ(t)], quantifying the direct lagged
effects of external input on state processes, are time-varying. The exter-
nal input had a significant direct effect on one or more state processes
for 13 participants, with 11 participants showing significant effects on
a single state process, and 2 participants showing significant effects on
2 state processes. It is particularly noteworthy that all these significant
direct effects were only on the second and third states; the external
input did not significantly impact the first state. Moreover, significant



Table 1
SSM results averaged across participants: Contemporaneous ROI loadings on each state
and lagged weights describing each state's evolution over time.

State 1 State 2 State 3

Contemporaneous loading (λ) ACC .85⁎ – –
R LPM .85⁎ .17 –
L DLPFC .86⁎ .03 .14
R IPL .82⁎ .25 .22
R DLPFC .83⁎ .11 .10
L LPM .80⁎ .12 − .04
L IPL .76⁎ .19 .26

Autoregressive weight (β) .79⁎ .63⁎ .60⁎

Note. ACC: anterior cingulate cortex; R LPM: right lateral premotor cortex; L DLPFC: left
dorsolateral prefrontal cortex; R IPL: right inferior parietal lobule; R DLPFC: right dorsolateral
prefrontal cortex; L LPM: left lateral premotor cortex; L IPL: left inferior parietal lobule.
⁎ p b .05.
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external input effects were primarily on states predominantly loading
on the bilateral IPL, with 38% of the detected effects on a state loading
on the left IPL and 27% of the effects on a state loading on the right
IPL. Thus, the second and third states can be interpreted in terms of
the lagged task effects they reflect for nearly half the sample.
Time-varying SSM parameters

Time-varying parameterswere present in the SSMs of 12 participants.
Table 2 lists the time-varying effects for each participant and defines the
states containing time-varying parameters in terms of their ROI loadings
and implications for brain function, with the bilateral LPM presumably
contributing to task-related motor responses, the bilateral DLPFC to
decision-making, and the bilateral IPL to language interpretation. Fig. 3
shows plots of the time courses of all participants' time-varying parame-
ters listed in Table 2. Fig. 4 integrates the information contained in Table 2
and Fig. 3 by displaying dynamic brain networks for two exemplar
participants.

Several conclusions can be drawn from these results. First, most
time-varying parameters were contemporaneous (only participant G
has a time-varying autoregressive parameter). Second, the left LPM
was the ROI most often identified as time-varying. In fact, it was identi-
fied as time-varying twice as often – accounting for 30% of the dynamic
parameters – as the next closest ROIs; the ACC, right DLPFC, and left IPL
Table 2
Identification and interpretation of time-varying states.

Participant State Time-varying parameters Additional RO

A 1 L IPL All
2 L LPM L IPL

B 2 L DLPFC
L LPM

R LPM
R DLPFC

C 1 ACC All
D 1 ACC

R LPM
R DLPFC
L LPM

All but R IPL

E 2 R DLPFC L DLPFC
R IPL

F 2 R LPM
L LPM

R IPL
L IPL

G 2 Autoregression R IPL
L IPL

H 3 L IPL
I 3 R DLPFC

L LPM
L IPL

R IPL

J 1 L DLPFC All
K 2 L LPM L IPL
L 1 ACC All

Note. ROI acronyms are defined in Table 1 note.
each accounted for 15% of the dynamic parameters. Third, the right IPL
did not have time-varying loadings for any participant. Fourth, although
therewere similarities across participants, therewere alsomarked indi-
vidual differences in the presence and patterns of time-varying param-
eters. For instance, all 4 time-varying parameters for participant D
markedly decreased across the time course, the 2 time-varying param-
eters for participant F spiked around time point 60 before plummeting,
and the single time-varying parameter for participant K showed a slow,
but steady increase across the time course until dropping off after time
point 120.Moreover, themajority of the participants (7 of 12) had SSMs
with a single time-varying parameter, but 3 participants had SSMswith
2 time-varying parameters, and 2 participants had SSMs with 3 and 4
time-varying parameters.

Fifth, time-varying parameters were present on all states. When a
time-varying loading inΛ[θ(t)] is on thefirst state process then its inter-
pretation is straight-forward because thefirst state represents a general,
common network for all participants (see General characteristics of
state space models (SSMs): contemporaneous and lagged parameters
section). When a time-varying loading is on the second or third state,
however, its interpretation depends upon the participation-specific pat-
tern of loadings of those states. This is exemplified in Fig. 4. For partici-
pant B (Fig. 4A), the bilateral LPM and DLPFC significantly loaded on the
second state, indicating that the state represents a decision-making and
response network, and both left hemisphere ROIs have time-varying
loadings in this network. For participant I (Fig. 4B), the right DLPFC,
left LPM, and left IPL have time-varying loadings on the third state,
which also contains a notable right IPL loading, and thus, represents a
language interpretation, decision-making, and response network. Fur-
thermore, most participants had time-varying loadings associated with
a single state, with only one (participant A) showing time-varying load-
ings on multiple states (i.e., a dynamic left IPL in the first, general state
and a dynamic left LPM in the left language interpretation and response
state).
Task performance

Finally, we examined whether participants with and without time-
varying parameters differed in verbal working memory task perfor-
mance, focusing on task accuracy and reaction time. The groups differed
on task accuracy, t(28) = −2.60, p = .02, with participants who had
Is defining the state Network identification

General
Left language interpretation & response
Decision-making & response

General
General

Language interpretation & decision-making

Language interpretation & response

Language interpretation

Left language interpretation
Language interpretation, decision-making, & response

General
Left language interpretation & response
General
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dynamic SSMs (M = .91, SD = .05) outperforming those who did not
(M= .84, SD= .08). The groups did not differ in reaction time, though,
t(28) = .07, p = .95, with both participants who had dynamic SSMs
(M = 730 ms, SD = 167 ms) and those who did not (M = 725 ms,
SD= 223 ms) responding in similar amounts of time.

Discussion

Interpretation and significance of findings

In this paper,we provided a description andfirst illustration of a new
state space model (SSM)-based approach for detecting smoothly time-
varying network connections in brain connectivity maps. The approach
is exploratory and can be applied in a data-driven way without any a
priori information. The obtained network connections are contempora-
neous and lagged directed functional connections among directly and
Fig. 3. Time-varying parameters for all participantswith dynamic SSMs, plotted across time; see
is the ACC, yellow is the R LPM,magenta is the L DLPFC, red is the R DLPFC, green is the L LPM, a
solid lines are first state parameters, dashed lines are second state parameters, and dotted lines
autoregression. The thick black line parallel to the y-axis represents the average standard deviat
dynamic parameters. ROI acronyms are defined in Table 1 note.
indirectly measured ROIs. This work fills three knowledge gaps
concerning the presence and nature of time-varying connectivities.
First, the model fit is innovative in at least one important respect: the
process variances of randomwalksmodeling the evolution of model pa-
rameters are estimated. In previous approaches these variances were
fixed a priori at some small value, which leads to sub-optimal perfor-
mance. Second, arbitrary time-varying parameters in BOLD fMRI data
can be estimated by means of optimal (quasi-) maximum likelihood
techniques involving locally exact second-order extended Kalmanfilter-
ing/smoothing. Third, time-varying contemporaneous connections can
be determined within the same model as lagged connections in a way
that is independent of the ordering of univariate components in the
vector-valued observed series. We provided technical details regarding
these general conclusions, a listing of the beta version of the Fortran
implementation that produced the results (see the Supplementary
Materials), results from small simulation studies, and an application
also Table 2. The time courses of different parameters are depicted in different colors: black
nd blue is the L IPL. The time courses of different states are depicted in different line styles:
are third state parameters. Black lines with circles show the time course of a second state
ion of the plotted parameters. The scale of the y-axis differs across participants to highlight



Fig. 3 (continued).
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demonstrating feasibility to cigarette smokers' verbal working memory
BOLD data.

Alongside these general conclusions, there were several specific and
novel findings. First, SSMs with three states were identified for all
participants. The first state represented a general neural network,
explaining the most variance in participants' models and displaying a
consistent pattern of loadings,with all seven ROIs contributing to it sub-
stantially and with similar orders of magnitude. The second and third
states varied across participants, and thus, require participant-specific
interpretations. For example, a state consisting of significant bilateral
IPL loadings likely represents a language interpretation network in the
context of the verbal working memory task participants were complet-
ing during data collection (see, e.g., participant G in Table 2). In fact, the
bilateral IPL were the two ROIs with the greatest contributions to the
second and third states of participants. Moreover, all three states had
large autoregressive components, with the component for the first
state being largest.

Second, the external inputwas related to brain function, with 43% of
participants showing task-related effects in their SSMs. The external
input consisted of the 3-back (most difficult) condition of the verbal
working memory task, convolved with a double gamma function to
approximate the hemodynamic response function. Effects of the
external input were exclusively on participants' second and third
states. This is consistent with the large second and third state load-
ings on the bilateral IPL, and suggests that the bilateral IPL are hubs
for neural networks underlying verbal working memory task perfor-
mance in smokers.

Third, 40% of participants had time-varying parameters, and they
were primarily associated with contemporaneous connections on the
latent state processes. The loading on the left LPM was most frequently
identified as being time-varying, a logical result because all participants
were right-handed and the LPM subserves the motor responses that
were variably elicited by the verbal working memory task. Because
our estimation approach allows for arbitrary detection of time-varying
parameters associated with both contemporaneous and lagged connec-
tions, it is particularly compelling that we found little evidence of
dynamic lagged parameters. Thus, our work calls into question the use
of time-varying vector autoregressive models (e.g., Hu et al., 2012;
Milde et al., 2010), which do not permit estimation of time-varying
contemporaneous relationships.



Fig. 4. Time-varying state networkmaps for two exemplary participants. ROIs are orange and overlaid on a standard template brain; see also Nichols et al. (2014). Lines showwhich ROIs
contribute to the latent state: Gray lines depict ROIs with stationary loadings, black lines depict ROIs with time-varying loadings, and line width reflects the magnitude of the loadings.
(A.) Participant B (from Table 2) had a decision-making and response state (i.e., state 2) consisting of the bilateral LPM and bilateral DLPFC, with the both left hemisphere ROIs having
time-varying loadings. (B.) Participant I (from Table 2) had a language interpretation, decision-making, and response state (i.e., state 3) consisting of the bilateral IPL, left LPM, and right
DLPFC, with the left hemisphere ROIs and right DLPFC having time-varying loadings. ROI acronyms are defined in Table 1 note.
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Fourth, the presence and pattern of time-varying ROIs showcases
individual differences in the neural processes underlying behavior.
Participants differed in the number of time-varying parameters in their
maps, the specific ROIs or autoregressive components thatwere dynamic,
the time course of the time-varying parameters, and the interpretation of
the parameters based upon the state processes on which the parameters
loaded. This highlights the importance of grouping procedures in connec-
tivity mapping that allow for individual-level nuances in the maps (as
presented in Gates and Molenaar, 2012).

Fifth, compared to those without dynamic relations, smokers with
dynamic relations performed better on the verbal working memory
task. Specifically, regular cigarette users who had dynamic patterns of
brain connectivity provided more correct responses when identifying
the letter X (0-back condition) and when the letter they were viewing
was presented three items ago (3-back condition) than users who had
stationary patterns of brain connectivity. This group difference likely
reflects an important neural process because it is consistent with past
work showing links between time-varying parameters and behavior
(Rack-Gomer and Liu, 2012; Thompson et al., 2013), and it cannot be
attributed to strategy use (e.g., as would be implied by a speed accuracy
trade-off), since both smokers with and without dynamic patterns of
brain connectivity had similar reaction times.
Suggestions for future research

Our approach can be straightforwardly generalized to multi-subject
applications. In this way, loadings of latent state processes can be
constrained to be equal or proportional across participants. For
example, we could have forced participants to have equal right and
left DLPFC loadings on the second latent state process in order to test
its interpretation in terms of a “decision-making” network. Also the
model can be implemented in a semi-confirmatory or confirmatory
way instead of in an exploratory, data-driven way, as presented in this
paper.

Themeaning of dynamic connectivitymaps for understanding brain
processes underlying smoking behavior requires further investigation.
Evidence reviewed above (Background and study motivation section)
suggests that dynamic processes are generally meaningful for behavior,
but work within the domain of smoking – a model system for drug
addiction – is lacking. We found that smokers with time-varying SSMs
outperformed those without time-varying SSMs in verbal working
memory task accuracy, but it is unclear how this is related to cigarette
use. Are individuals with time-varying relations more likely to quit
smoking? Do our findings generalize to tasks beyondworkingmemory?
Our study of cigarette users completing a well-characterized task provid-
ed valuable context for interpreting time-varying parameters, but future
work could extend these methods to new samples and tasks in an
attempt to predict smoking behavior.
Conclusions

We presented an innovative approach for estimating dynamic con-
nectivity maps. Methodologically, we demonstrated for the first time
that a novel data estimation technique embedded within second-order
extended Kalman filtering/smoothing can be used to identify arbitrary
time-varying contemporaneous and lagged relations in BOLD fMRI
data. Substantively, we revealed a link between working memory and
dynamic brain activity that has implications for smoking research.
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Future applications of this approach have the potential to provide insight
into basic questions regarding brain function and applied questions
regarding intervention.
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Appendix A

The nonlinear state-space model (2) in the main text to be fitted to
the p-variate observed series y(t), t = 1, 2,…, T is:

y tð Þ ¼ h x tð Þ; t½ � þ ε tð Þ
x tþ 1ð Þ ¼ f x tð Þ; t½ � þw tð Þ

where x(t) is (q+ r)-dimensional and consists of a concatenation of the
state process η(t) and the parameter process θ(t) in the linearmodel Eq.
(1) in themain text. The initial values θ(0) and var[θ(0)] are obtained by
fitting the stationary version of the linear state-space model Eq. (1) in
the text by means of either the block-Toeplitz approach (Molenaar,
1985) or the prediction error decomposition (Hamaker et al., 2005).

Let x(t)(t|t′) denote the expectation of x(t) conditional on x(t′),
where t′ = t or t − 1. Define the following partial derivatives at
x(t|t − 1):

hx tð Þ≡ ∂
∂x

h x; t½ �

hi
xx tð Þ≡ ∂

2hi x tð Þ; t½ �
∂x2

:

Define the following partial derivatives at x(t|t):

fx tð Þ≡ ∂
∂x

f x; t½ �

f ixx tð Þ≡ ∂
2 f i x tð Þ; t½ �

∂x2
:

Let x(0|0)′ = [0′, θ(0)′] and P(0|0) = diag{I, var[θ(0)]}. Let ei
have 1 at the i-th row and zeroes elsewhere and let Tr[.] denote the
trace.

E-step. For t = 1,…, T do:
x(t|t− 1) = f[x(t − 1|t − 1), t − 1] + 0.5∑

qþr

i¼1
eiTr½fixx(t − 1)

P(t − 1|t − 1)]
P(t|t− 1) = fx(t − 1) P(t − 1|t− 1)fx(t − 1)′ +

0.5∑
qþr

i¼1
∑
qþr

j¼1
eie jTr½f ixx(t−1)P(t− 1|t− 1)fxxj (t−1)

P(t− 1|t− 1)] + var[w(t− 1)]

y(t|t− 1) = h[x(t|t− 1), t] + 0.5∑
p

i¼1
eiTr½hi

xx(t) P(t|t − 1)]
S(t) = hx(t) P(t|t− 1)hx(t)′ +

0.5∑
p

i¼1
∑
p

j¼1
eie jTr½hi

xx(t)P(t|t− 1)hxx
j (t) P(t|t− 1)] + Ξ

W(t) = P(t|t− 1) hx(t) S(t)−1

P(t|t) = [I−W(t)hx(t)] P(t|t− 1) [I−W(t)hx(t)]′+W(t) ΞW(t)′
w(|t) = y(t) − y(t|t− 1)
x(t|t) = x(t|t− 1) + W(t) w(t|t)
M-step. Maximize the log-likelihood L[w(t|t), t = 1, …, T] with
respect to var[ε (t), ε (t)′] = Ξ, var[ζ(t), ζ(t)′] = Ψ and var[ξ(t),
ξ(t)′] = Φ:
maxΞΨΦL[w(t|t), t = 1, …, T]

L[w(t|t), t=1,…, T]=−0.5[pTln2π+∑
T

t¼1
ln|S(t)|+∑

T

t¼1
w(t|t)′ S(t)−1

w(t|t)]

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.10.088.

References

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014. Tracking
whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676.

Bar-Shalom, Y., Fortmann, T.E., 1988. Tracking and Data Association. Academic Press,
Boston.

Bar-Shalom, Y., Li, X.R., Kirubarajan, T., 2001. Estimation with Applications to Tracking
and Navigation. Wiley, New York.

Behrens, T.E.J., Sporns, O., 2012. Human connectomics. Curr. Opin. Neurobiol. 22,
144–153.

Beltz, A.M., Molenaar, P.C.M., 2015. A posteriori model validation for the temporal order of
directed functional connectivity maps. Front. Neurosci. 9 (article 304).

Bertsekas, D.P., 1999. Nonlinear Programming. Athena Scientific, Belmont, MA.
Betzel, R.F., Erickson, M.A., Abell, M., O'Donnell, B.F., Hetrick, W.P., Sporns, O., 2012. Syn-

chronization dynamics and evidence for a repertoire of network states in resting
EEG. Front. Comput. Neurosci. 6, 74.

Borsboom, D., 2009. Measuring the Mind: Conceptual Issues in Contemporary Psycho-
metrics. Cambridge University Press, New York.

Brown, T.A., 2006. Confirmatory Factor Analysis for Applied Research. Guilford Press, New
York.

Chang, C., Glover, G.H., 2010. Time-frequency dynamics of resting-state brain connectivity
measured with fMRI. NeuroImage 50, 81–98.

Chang, C., Liu, Z., Chen, M.C., Liu, X., Duyn, J.H., 2013. EEG correlates of time-varying BOLD
functional connectivity. NeuroImage 72, 227–236.

Chen, G., Glen, D.R., Saad, Z.S., Hamilton, J.P., Thomason, M.E., Gotlib, I.H., et al., 2011. Vec-
tor autoregression, structural equation modeling, and their synthesis in neuroimag-
ing data analysis. Comput. Biol. Med. 41, 1142–1155.

Chow, S.-M., Zhang, G., 2013. Nonlinear regime-switching state-space (RSSS) models.
Psychometrika 78, 740–768.

Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic res-
onance neuroimages. Comput. Biomed. Res. 29, 162–173.

de Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., Mantini, D., Marzetti, L., et al., 2010.
Temporal dynamics of spontaneous MEG activity in brain networks. Proc. Natl. Acad.
Sci. U. S. A. 107, 6040–6045.

Durbin, J., Koopman, S.J., 2001. Time Series Analysis by State Space Methods. Oxford Uni-
versity Press, Oxford.

Franke, J., Dahlhaus, R., Polzehl, J., Spokoiny, V., Steidl, G., Weickert, J., et al., 2008. Struc-
tural adaptive smoothing procedures. In: Dahlhaus, R., Kurths, J., Maass, P., Timmer,
J. (Eds.), Mathematical Methods in Time Series Analysis and Digital Image Processing.
Springer, Berlin, pp. 183–229.

Friston, K.J., Moran, R., Seth, A.K., 2013. Analysing connectivity with Granger causality and
dynamic causal modeling. Curr. Opin. Neurobiol. 23, 172–178.

Gates, K.M., Molenaar, P.C.M., 2012. Group search algorithm recovers effective connectiv-
ity maps for individuals in homogeneous and heterogeneous samples. NeuroImage
63, 310–319.

Gates, K.M., Molenaar, P.C., Hillary, F.G., Ram, N., Rovine, M.J., 2010. Automatic search for
fMRI connectivity mapping: an alternative to Granger causality testing using formal
equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage 50,
1118–1125.

Gates, K.M., Molenaar, P.C.M., Hillary, F.G., Slobounov, S., 2011. Extended unified SEM ap-
proach for modeling event-related fMRI data. NeuroImage 54, 1151–1158.

Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H., 1998. User's Guide to NPSOL 5.0: A
Fortran Package for Nonlinear Programming. Systems Optimization Laboratory,
Stanford, CA.

Goodwin, G.C., Sin, K.S., 1984. Adaptive Filtering Prediction and Control. Prentice Hall,
Englewood Cliffs, NJ.

Hamaker, E.L., Dolan, C.V., Molenaar, P.C.M., 2005. Statistical modeling of the individual:
rationale and application of multivariate stationary time series analysis. Multivar.
Behav. Res. 40, 207–233.

Handwerker, D.A., Roopchansingh, V., Gonzalez-Castillo, J., Bandettini, P.A., 2012. Periodic
changes in fMRI connectivity. NeuroImage 63, 1712–1719.

Havlicek, M., Friston, K.J., Jan, J., Brazdil, M., Calhoun, V.D., 2011. Dynamic modeling of
neuronal responses in fMRI using cubature Kalman filtering. NeuroImage 56,
2109–2128.

Hemmelmann, D., Ungureanu, M., Hesse, W., Wüstenberg, T., Reichenbach, J.R., Witte,
O.W., et al., 2009. Modelling and analysis of time-variant directed interrelations be-
tween brain regions based on BOLD-signals. NeuroImage 45, 722–737.

Hu, L., Zhang, Z.G., Hu, Y., 2012. A time-varying source connectivity approach to reveal
human somatosensory information processing. NeuroImage 62, 217–228.

http://dx.doi.org/10.1016/j.neuroimage.2015.10.088
http://dx.doi.org/10.1016/j.neuroimage.2015.10.088
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0005
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0005
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0010
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0010
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0015
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0015
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0020
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0020
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0025
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0025
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0030
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0035
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0035
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0035
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0040
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0040
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0045
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0045
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0050
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0050
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0055
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0055
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0060
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0060
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0060
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0065
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0065
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0070
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0070
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0075
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0075
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0080
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0080
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0085
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0085
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0085
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0085
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0090
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0090
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0095
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0095
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0095
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0100
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0100
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0100
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0100
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0105
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0105
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0110
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0110
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0110
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0115
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0115
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0120
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0120
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0120
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0125
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0125
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0130
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0130
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0130
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0135
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0135
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0140
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0140


802 P.C.M. Molenaar et al. / NeuroImage 125 (2016) 791–802
Hutchison, R.M.,Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., et
al., 2013. Dynamic functional connectivity: promise, issues, and interpretations.
NeuroImage 80, 360–378.

Jones, D.T., Vemuri, P., Murphy, M.C., Gunter, J.L., Senjem, M.L., Machulda, M.M., et al.,
2012. Non-stationarity in the “resting brain's” modular architecture. PLoS ONE 7 (ar-
ticle e39731).

Karunanayaka, P., Eslinger, P.J., Wang, J.L., Weitekamp, C.W., Molitoris, S., Gates, K.M., et
al., 2014. Networks involved in olfaction and their dynamics using independent com-
ponent analysis and unified structural equation modeling. Hum. Brain Mapp. 35,
2055–2072.

Kim, J., Zhu, W., Chang, L., Bentler, P.M., Ernst, T., 2007. Unified structural equation model-
ing approach for the analysis of multisubject, multivariate functional MRI data. Hum.
Brain Mapp. 28, 85–93.

Kiviniemi, V., Vire, T., Remes, J., Elseoud, A.A., Starck, T., Tervonen, O., et al., 2011. A sliding
time-window ICA reveals spatial variability of the default mode network in time.
Brain Connect. 1, 339–347.

Lütkepohl, H., 2005. New Introduction to Multiple Time Series Analysis. Springer, Berlin.
Milde, T., Leistritz, L., Astolfi, L., Miltner, W.H.R., Weiss, T., Babiloni, F., et al., 2010. A new

Kalman filter approach for the estimation of high-dimensional time-variant multivar-
iate AR models and its application in analysis of laser-evoked brain potentials.
NeuroImage 50, 960–969.

Molenaar, P.C.M., 1985. A dynamic factor model for the analysis of multivariate time
series. Psychometrika 50, 181–202.

Möller, E., Schack, B., Arnold, M., Witte, H., 2001. Instantaneous multivariate EEG coher-
ence analysis by means of adaptive high-dimensional autoregressive models.
J. Neurosci. Methods 105, 143–158.

Nichols, T.T., Gates, K.M., Molenaar, P.C.M., Wilson, S.J., 2014. Greater BOLD activity but
more efficient connectivity is associated with better cognitive performance within a
sample of nicotine-deprived smokers. Addict. Biol. 19, 931–940.

Niedźwiecki, M., 2000. Identification of Time-varying Processes. Wiley, New York.
Olier, I., Trujillo-Barreto, N.J., El-Deredy, W., 2013. A switching multi-scale dynamical

network model of EEG/MEG. NeuroImage 83, 262–287.
Popa, D., Popescu, A.T., Paré, D., 2009. Contrasting activity profile of two distributed corti-

cal networks as a function of attentional demands. J. Neurosci. 29, 1191–1201.
Primiceri, G.E., 2005. Time varying structural vector autoregressions and monetary policy.

Rev. Econ. Stud. 72, 821–852.
Rack-Gomer, A.L., Liu, T.T., 2012. Caffeine increases the temporal variability of resting-

state BOLD connectivity in the motor cortex. NeuroImage 59, 2994–3002.
Sakoğlu, Ü., Pearlson, G.D., Kiehl, K.A., Wang, Y.M., Michael, A.M., Calhoun, V.D., 2010. A
method for evaluating dynamic functional network connectivity and task-
modulation: application to schizophrenia. MAGMA 23, 351–366.

Simon, D., 2006. Optimal State Estimation: Kalman, H-infinity and Nonlinear Approaches.
Wiley, Hoboken, NJ.

Smith, S.M., 2012. The future of fMRI connectivity. NeuroImage 62, 1257–1266.
Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., et

al., 2011. Network modelling methods for FMRI. NeuroImage 54, 875–891.
Smith, J.F., Pillai, A., Chen, K., Horwitz, B., 2012. Effective connectivity modeling for fMRI:

six issues and possible solutions using linear dynamic systems. Front. Syst. Neurosci.
5 (article 104).

Sutherland, M.T., Ross, T.J., Shakleya, D., Huestis, M.A., Stein, E.A., 2011. Chronic smoking,
but not acute nicotine administration, modulates neural correlates of working mem-
ory. Psychopharmacology 213, 29–42.

Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Laufs, H., 2012. Dynamic
BOLD functional connectivity in humans and its electrophysiological correlates.
Front. Hum. Neurosci. 6 (article 339).

Thompson, G.J., Magnuson, M.E., Merritt, M.D., Schwarb, H., Pan, W.J., McKinley, A., et al.,
2013. Short-time windows of correlation between large-scale functional brain net-
works predict vigilance intraindividually and interindividually. Hum. Brain Mapp.
34, 3280–3298.

Vedel-Larsen, E., Fuglø, J., Channir, F., Thomsen, C.E., Sørensen, H.B.D., 2010. A compara-
tive study between a simplified Kalman filter and slidingwindow averaging for single
trial dynamical estimation of event-related potential. Comput. Methods Prog.
Biomed. 99, 252–260.

Wacker, M., Galicki, M., Putsche, P., Milde, T., Schwab, K., Haueisen, J., et al., 2011. A time-
variant processing approach for the analysis of alpha and gamma MEG oscillations
during flicker stimulus generated entrainment. IEEE Trans. Biomed. Eng. 58,
3069–3077.

Wilson, S.J., Sayette, M.A., Fiez, J.A., 2012. Quitting-unmotivated and quitting-motivated
cigarette smokers exhibit different patterns of cue-elicited brain activation when an-
ticipating an opportunity to smoke. J. Abnorm. Psychol. 121, 198–211.

Wilson, S.J., Sayette, M.A., Fiez, J.A., 2013. Neural correlates of self-focused and other-
focused strategies for coping with cigarette cue exposure. Psychol. Addict. Behav.
27, 466–476.

Xu, J., Mendrek, A., Cohen, M.S., Monterosso, J., Simon, S., Brody, A.L., et al., 2006. Effects of
acute smoking on brain activity vary with abstinence in smokers performing the N-
Back task: a preliminary study. Psychiatry Res. Neuroimaging 148, 103–109.

http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0145
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0145
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0150
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0150
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0155
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0155
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0155
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0160
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0160
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0160
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0165
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0165
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0165
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0170
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0175
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0175
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0175
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0175
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0180
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0180
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0185
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0185
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0185
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0190
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0190
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0190
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0195
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0200
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0200
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0205
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0205
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0210
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0210
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0215
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0215
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0220
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0220
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0220
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0225
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0225
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0230
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0235
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0240
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0240
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0240
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0245
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0245
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0245
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0250
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0250
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0250
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0255
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0255
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0255
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0260
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0260
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0260
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0260
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0265
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0265
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0265
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0265
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0275
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0275
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0275
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0280
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0280
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0280
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0285
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0285
http://refhub.elsevier.com/S1053-8119(15)01021-6/rf0285

	State space modeling of time-�varying contemporaneous and lagged relations in connectivity maps
	Introduction
	Background and study motivation
	Current study

	Methods
	Participants
	Procedures
	Measures
	Baseline assessment
	Neuroimaging assessment
	Task performance

	Data analysis plan
	Data preparation
	Model specification
	Choice of additional assumptions
	Model transformation
	Model interpretation
	Statistical analysis
	Comparison with related approaches

	Model fitting
	Some simulation studies
	Task performance


	Results
	General characteristics of state space models (SSMs): contemporaneous and lagged parameters
	External input effects in SSMs
	Time-varying SSM parameters
	Task performance

	Discussion
	Interpretation and significance of findings
	Suggestions for future research
	Conclusions

	Acknowledgments
	Appendix A
	Appendix B. Supplementary data
	References


